
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Delta Chat Mail-Server
Template & Libraries 02.2023
Cure53, Dr.-Ing. M. Heiderich, Dipl.-Ing. A. Inführ, MSc. H. Moesl

Index
Pentest-Report Delta Chat Mail-Server Template & Libraries 02.2023

Index
Introduction
Scope
Identified Vulnerabilities

MER-01-003 WP2: Unencrypted SQLite database storage (Low)
MER-01-004 WP1: Domain validation and creation mismatch (Medium)
MER-01-005 WP1: Path traversal in mailcow API request (Low)
MER-01-008 WP1: Shell command injection in mailcow Sync Job feature (High)

Miscellaneous Issues
MER-01-001 WP1: Path traversal in QR code generation via token name (Low)
MER-01-002 WP2: Outdated and vulnerable dependencies (Info)
MER-01-006 WP2: Lack of TLS minimum version set (Low)
MER-01-007 WP2: Providers incur potentially insecure settings (Info)

Conclusions

Cure53, Berlin · 02/22/23 1/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“Starting in 2017, merlinux is facilitating and sponsoring the development of Delta.Chat,
a unique server-less, end-to-end encrypting messenger that interoperates with the exist-
ing massively federated e-mail infrastructure.”

From https://merlinux.eu/

This report details the scope, results, and conclusory summaries of a penetration test
and source code audit against the merlinux-curated and mailcow-based mail-server tem-
plate for Delta Chat usage, the related setup, and several connected Delta Chat Rust li-
braries. The security assessment was requested by merlinux GmbH in January 2023
and initiated by Cure53 in February 2023, namely in CW07. A total of ten days were allo-
cated to fulfill this project’s coverage expectations.

The testing conducted for this audit was divided into two distinct Work Packages (WPs)
for execution efficiency, as follows:

• WP1: White-box tests & audits against merlinux mail-server template & setup
• WP2: White-box tests & audits against merlinux Rust libraries

Cure53 was granted access to all relevant Github repositories. The methodology se-
lected was white-box and a team comprising three skillmatched senior testers was as-
signed to the project’s preparation, execution, and finalization. All preparatory measures
were completed in February 2023, namely in CW06, to ensure that the audit could pro-
ceed without hindrance or delay. Communications were facilitated via a dedicated Delta
Chat channel, wherein all participatory personnel from both parties were invited to par-
take throughout the test preparations and discussions. In light of this, communications
proceeded smoothly on the whole. The scope was well-prepared and transparent, no
noteworthy roadblocks were encountered throughout testing, and cross-team queries re-
mained minimal as a result.

Cure53 gave frequent status updates concerning the test and any related findings, whilst
simultaneously offering prompt queries and receiving efficient, effective answers from
the maintainers. Live reporting was requested and subsequently conducted for all tickets
assigned a higher severity rating, specifically Medium in this case. Concerning the find-
ings, the testing team achieved widespread coverage over the WP1 and WP2 scope
items, identifying a total of eight. Four of the findings were categorized as security vul-
nerabilities, whilst the remaining four were deemed general weaknesses with lower ex-
ploitation potential. Considering the moderate volume of findings detected, the testing
team garnered an exceedingly positive impression of the underlying codebase.

Cure53, Berlin · 02/22/23 2/17

https://merlinux.eu/
https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Leveraging Rust as the primary programming language was deemed an astute choice,
as the underlying framework offers robust security paradigms by default. Supplementary
integrations using forbid(unsafe_code) force developers into a path that offers far less
attack surface to classic memory corruption issues. Nevertheless, Cure53 observed am-
ple opportunities for hardening, as corroborated by the tickets outlined in this report.
MER-01-004 demonstrates a classic example whereby different components of the
setup employ alternate parsing mechanisms to check email addresses. This underlying
mismatch thus allows for the creation of permanent accounts that cannot be deleted.

In addition, two path traversal issues were detected and documented in tickets MER-01-
005 and MER-01-001 respectively. The former only allows directory traversal to almost
arbitrary mailcow API endpoints, though the latter may have been exploitable via attack
vectors on Python Pillow. However, the checks ensuring the referenced paths exist ren-
der this issue unexploitable at present. The remaining weaknesses mostly pertain to
oversights in connected dependencies that should be kept up-to-date, as well as some
erroneous behaviors in the underlying TLS configuration. Notably, these incur insignifi-
cant risk and minimal impact against the audited scope’s resilient security posture on the
whole.

The report will now shed more light on the scope and testing setup as well as provide a
comprehensive breakdown of the available materials. Subsequently, the report will list all
findings identified in chronological order, starting with the detected vulnerabilities and fol-
lowed by the general weaknesses unearthed. Each finding will be accompanied by a
technical description and Proof of Concepts (PoCs) where applicable, plus any relevant
mitigatory or preventative advice to action.

In summation, the report will finalize with a conclusion in which the Cure53 team will
elaborate on the impressions gained toward the general security posture of the merlinux-
curated and mailcow-based mail-server template for Delta Chat usage, related setup,
and several connected Delta Chat Rust libraries, giving high-level hardening advice
where applicable.

Cure53, Berlin · 02/22/23 3/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Pentests & source code audits against merlinux-curated mail-server setup

◦ WP1: White-box tests & audits against merlinux mail-server template & setup
▪ Relevant source-code repositories:

• https://github.com/mailcow/mailcow-dockerized
• https://github.com/deltachat/mailadm

▪ Test instance:
• http://afterca.re/

▪ SSH credentials:
• U: Audit

◦ WP2: White-box tests & audits against related Delta Chat Rust libraries
▪ Relevant source-code repositories:

• Delta Chat core:
◦ https://github.com/deltachat/deltachat-core-rust/tree/master/src

• async-smtp:
◦ https://github.com/async-email/async-smtp

• async-imap:
◦ https://github.com/async-email/async-imap

• async-native-TLS:
◦ https://github.com/async-email/async-native-tls

• Native-TLS:
◦ https://github.com/sfackler/rust-native-tls/

• fast-socks5:
◦ https://crates.io/crates/fast-socks5

Cure53, Berlin · 02/22/23 4/17

https://crates.io/crates/fast-socks5
https://github.com/sfackler/rust-native-tls/
https://github.com/async-email/async-native-tls
https://github.com/async-email/async-imap
https://github.com/async-email/async-smtp
https://github.com/deltachat/deltachat-core-rust/tree/master/src
http://afterca.re/
https://github.com/deltachat/mailadm
https://github.com/mailcow/mailcow-dockerized
https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during
the testing period. Notably, findings are cited in chronological order rather than by de-
gree of impact, with the severity rank offered in brackets following the title heading for
each vulnerability. Furthermore, all tickets are given a unique identifier (e.g., MER-01-
001) to facilitate any future follow-up correspondence.

MER-01-003 WP2: Unencrypted SQLite database storage (Low)
The Delta Chat core library written in Rust underwent dynamic testing and a source code
review, revealing that both the Delta Chat desktop and mobile apps utilize a SQLite
database to store sensitive information such as email addresses, passwords, OAUTH2
tokens, and configuration data. Whilst the Android app implements encryption using a
passphrase for this database, the desktop app stores the database unencrypted in the
user's home directory. By leveraging access to the database, an attacker would gain all
necessary information to assume full control over the used email account.

Given that the customer is already aware of this issue and that the assessment in ques-
tion is not specifically focused on the Delta Chat desktop app, this issue’s severity im-
pact was appropriately downgraded to Low.

Steps to reproduce:
1. Open the database using the tool sqlite3, as follows:

sqlite3 <HOME>/.config/DeltaChat/accounts/<account_nr>/dc.db

2. Note that fetching all data from the config table yields the following result:

Shell excerpt:
sqlite> select * from config;
1|dbversion|96
2|addr|wmvnq@testrun.org
3|mail_pw|4/<redacted>

14|configured_mail_pw|4/<redacted>
[...]
20|configured_send_pw|4/<redacted>
21|configured_send_security|2

48|notify_about_wrong_pw|1

To mitigate this issue, Cure53 advises implementing a passphrase-protected SQLite
database for the Delta Chat desktop app, as achieved for the Android app integration.

Cure53, Berlin · 02/22/23 5/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

One optimal solution in this respect would be to utilize PBKDF2 or another similar mech-
anism to derive the passphrase from a master password, which the user would enter
when launching the desktop app.

MER-01-004 WP1: Domain validation and creation mismatch (Medium)
During the assessment of the mailadm application, the observation was made that the
specified address is modified before being passed to the internal mailcow API during the
creation of a new user account. This behavior allows one to specify an address that
passes all checks and is accepted by the mailcow API but is stored differently in the
mailadm local database. This mismatch means that the account is never deleted, since
mailadm stores a different account address than that sent to mailcow and the deletion
process is solely based on locally stored addresses.

Initially, the mailadm simply checks whether the specified address string ends with the
configured domain. As the domain setting does not contain the @ character, this check
itself permits arbitrary domains. Additionally, as demonstrated below, the application
subsequently divides the address and solely utilizes the first and second parts, therefore
ignoring any additional @<characters> proportions present in the address string.

Example command:
/add-user anemail@afterca.re@randomstuff@ABCDafterca.re abcd1234 <yourToken>

Address sent to mailcow:
anemail@afterca.re

Affected file:
mailadm-master/src/mailadm/conn.py

Affected code:
def add_email_account(self, token_info, addr=None, password=None):
[...]
 else:
 if not addr.endswith(self.config.mail_domain):
 raise ValueError(
 "email {!r} is not on domain {!r}".format(addr, self.config.mail_domain)
)
[...]
seems that everything is fine so far, so let's invoke mailcow:
self.get_mailcow_connection().add_user_mailcow(addr, password, token_info.name)

Affected file:
mailadm-master/src/mailadm/mailcow.py

Cure53, Berlin · 02/22/23 6/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected code:
def add_user_mailcow(self, addr, password, token, quota=0):
[...]
 url = self.mailcow_endpoint + "add/mailbox"
 payload = {
 "local_part": addr.split("@")[0],
 "domain": addr.split("@")[1],
 "quota": quota,
 "password": password,
 "password2": password,
 "active": True,
 "force_pw_update": False,
 "tls_enforce_in": False,
 "tls_enforce_out": False,
 "tags": ["mailadm:" + token],
 }
 result = r.post(url, json=payload, headers=self.auth, timeout=HTTP_TIMEOUT)

To mitigate this issue, Cure53 recommends strictly validating a specified email address
before further processing, for which the Python language offers libraries that already im-
plement this functionality. Additionally, the developer team should adapt the endswith
call so that the @ character is included at the very least.

MER-01-005 WP1: Path traversal in mailcow API request (Low)
During the user account creation process, the specified address is passed to the mail-
cow API to verify whether it exists already. Here, the confirmation was made that the ad-
dress is used in the HTTP path without any strict validation, which permits traversing the
HTTP path up and specifying an arbitrary mailcow API endpoint. Since the response is
not returned to a malicious user, nor do the exposed HTTP GET endpoints incur any
specific security issue, this flaw’s severity impact was appropriately downgraded to Low.

PoC commands:
/add-user goingtostay@afterca.re@/../../differentEndpoint#@afterca.re abcd1234
<yourToken>

Created URL:
http://mailcow.host/api/v1/get/goingtostay@afterca.re@/../../differentEndpoint#@after-
ca.re

Normalized URL:
http://mailcow.host/api/v1/differentEndppiont

Cure53, Berlin · 02/22/23 7/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected file:
mailadm-master/src/mailadm/mailcow.py

Affected code:
def get_user(self, addr):
 """HTTP Request to get a specific mailcow user (not only mailadm-generated
ones)."""
 url = self.mailcow_endpoint + "get/mailbox/" + addr
 result = r.get(url, headers=self.auth, timeout=HTTP_TIMEOUT)
 json = result.json()

To mitigate this issue, Cure53 advises ensuring that a specified email address is strictly
validated before any further processing, as stipulated in ticket MER-01-004. Generally
speaking, a benign email address must not contain characters such as question marks
(?), hashes (#), dots (.), and forward slashes (/), which should therefore be rejected by
the mailadm application.

MER-01-008 WP1: Shell command injection in mailcow Sync Job feature (High)
The mailcow UI, which is used by the administrator during the original setup phase, can
also be utilized by standard users to configure certain account settings. During the as-
sessment, the observation was made that the Sync Job feature - which can be made
available to standard users - suffers from a shell command injection. A malicious user
can abuse this vulnerability to obtain shell access to the Docker container running dove-
cot.

The imapsync Perl script implements all the necessary functionality for this feature, in-
cluding the XOAUTH2 authentication mechanism. This code path creates a shell com-
mand to call openssl. However, since different parts of the specified user password are
included without any validation, one can simply include and execute additional shell
commands. Notably, the default ACL for a newly-created mailcow account does not in-
clude the necessary permission, though the testing team confirmed that specific in-
stances exist whereby users assign this permission.

Affected file:
https://github.com/mailcow/mailcow-dockerized/blob/master/data/Dockerfiles/dovecot/
imapsync

Cure53, Berlin · 02/22/23 8/17

https://github.com/mailcow/mailcow-dockerized/blob/master/data/Dockerfiles/dovecot/imapsync
https://github.com/mailcow/mailcow-dockerized/blob/master/data/Dockerfiles/dovecot/imapsync
https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected code:
sub xoauth2
{
[...]
if($imap->Password =~ /^(.*\.json)$/x)
{ [...] }
else
{

Get iss (service account address), keyfile name, and keypassword if
necessary
($iss, my $keyfile, my $keypass) = $imap->Password =~ /([\-\d\w\@\.]+);
([a-zA-Z0-9 _\-\.\/]+);?(.*)?/x ;

Assume key password is google default if not provided
$keypass = 'notasecret' if not $keypass;

$sync->{ debug } and myprint("Service account: $iss\nKey file: $keyfile\
nKey password: $keypass\n");

Get private key from p12 file (would be better in perl...)
$key = `openssl pkcs12 -in "$keyfile" -nodes -nocerts -passin pass:$key-
pass -nomacver`;

Steps to reproduce:
1. Log in at the mailcow GUI with a Sync Job permission user.
2. Click Create a new job sync.
3. Use the following information:
4. Host: imap.google.com
5. Port: 993
6. Encryption: SSL
7. Username: test
8. Password: 123;abc;r ;$(id);
9. Custom parameters: --authmech1=XOAUTH
10. Check the Active checkbox only and create the sync job.
11. Wait for the sync job to fail and open the associated links.
12. Observe that the injected ID command will be executed.

Log output:
directory:../crypto/bio/bss_file.c:69:fopen('abc','rb')
140026593842496:error:2006D080:BIO routines:BIO_new_file:no such file:../
crypto/bio/bss_file.c:76:
sh: 1: uid=65534(nobody): not found
sh: 1: -nomacver: not found

Cure53, Berlin · 02/22/23 9/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

To mitigate this issue, Cure53 highly advises reporting this vulnerability to the official
maintainers to ensure an adequate resolution can be rolled out. One temporary solution
here would be to remove the XOAUTH2 function until this fix is correctly implemented.
As a defense-in-depth mechanism, the documentation could be extended to include a
warning that stipulates assigning additional permissions to mailcow users and the poten-
tial security impact.

Cure53, Berlin · 02/22/23 10/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of
these results are vulnerable code snippets that did not provide an easy method by which
to be called. Conclusively, whilst a vulnerability is present, an exploit may not always be
possible.

MER-01-001 WP1: Path traversal in QR code generation via token name (Low)
After an administrator creates a token, a QR code can be generated in tandem that can
be leveraged by users to obtain valid credentials. During this process, the specified to-
ken name is used to craft a filename to store the QR code image in the local file system.
Since the token name is not validated, an attacker can traverse the local file system and
potentially overwrite other images.

However, this sink was deemed unexploitable because the utilized PIL library verifies
that all specified folders in the path exist before applying any normalization, which
breaks any successful traversal functionality.

PoC command:
/add-token /../mytesttokenv2 1d 1

Exception:
Exception [Errno 2] No such file or directory: 'docker-data/dcaccount-after-
ca.re-/../mytesttokenv2.png'

Affected file:
src/mailadm/commands.py

Affected code:
def qr_from_token(db, tokenname):
 with db.read_connection() as conn:
 token_info = conn.get_tokeninfo_by_name(tokenname)
 config = conn.config

 if token_info is None:
 return {"status": "error", "message": "token {!r} does not
exist".format(tokenname)}

 image = gen_qr(config, token_info)
 fn = "docker-data/dcaccount-%s-%s.png" % (config.mail_domain,

token_info.name)
 image.save(fn)
 return {"status": "success", "filename": fn}

Cure53, Berlin · 02/22/23 11/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

To mitigate this issue, Cure53 advises verifying that a token's name does not specify po-
tential malicious character sequences allowing it to alter the local file path. An alternative
approach in this respect would be to generate a random filename for each token during
creation and use this property when a local file is created or read.

MER-01-002 WP2: Outdated and vulnerable dependencies (Info)
Whilst reviewing the source code of the deltachat-core-rust repository, the observation
was made that the library utilizes a plethora of external libraries, some of which are out-
dated and incur known vulnerabilities. Publicly available tools such as snyk1 and the
cargo-audit2 crate (for the Rust language specifically) can provide assistance for devel-
opment teams in identifying and mitigating known vulnerabilities in used dependencies
and can be directly integrated into the build process.

The software dependencies (Rust crates) that remain vulnerable at the time of testing
represent the following:

• libsqlite3-sys, version 0.24.2, Severity HIGH (CVSS 7.5)3
• time, version 0.1.44, Severity MEDIUM (CVSS 6.2)4

To mitigate this issue, Cure53 recommends scanning for vulnerable dependencies on a
regular basis, which can be achieved by integrating automated vulnerability scanners
into the software's Continuous Integration (CI) lifecycle. Even in the event the used de-
pendencies do not persist any known weaknesses, all dependencies should be retained
up-to-date in adherence with best practice.

1 https://snyk.io/docs/using-snyk
2 https://crates.io/crates/cargo-audit
3 https://rustsec.org/advisories/RUSTSEC-2022-0090
4 https://rustsec.org/advisories/RUSTSEC-2020-0071

Cure53, Berlin · 02/22/23 12/17

https://cure53.de/
https://rustsec.org/advisories/RUSTSEC-2020-0071
https://rustsec.org/advisories/RUSTSEC-2022-0090
https://crates.io/crates/cargo-audit
https://snyk.io/docs/using-snyk
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

MER-01-006 WP2: Lack of TLS minimum version set (Low)
During the source code review of the deltachat-core-rust library, the observation was
made that the async_native_tls crate is utilized to establish TLS sessions to an SMTP/
IMAP server. Specifically, async_native_tls uses Schannel5 on Windows, Securi-
ty.framework6 on iOS, and OpenSSL7 as SSL/TLS libraries.

Testing confirmed that no minimum TLS version is configured via the function min_pro-
tocol_versio during initialization of the Rust struct TlsConnector. According to the
TlsConnector documentation, a default value of TLS 1.0 is supplied in that case8.

Affected file:
deltachat-core-rust/src/login_param.rs

Affected code:
pub fn build_tls(strict_tls: bool) -> async_native_tls::TlsConnector {
 let tls_builder =
 async_native_tls::TlsConnector::new().add_root_certificate(...);

 if strict_tls {
 tls_builder
 } else {
 tls_builder
 .danger_accept_invalid_hostnames(true)
 .danger_accept_invalid_certs(true)
 }
}

Using an insecure version of the TLS protocol can incur issues on certain operating sys-
tems, particularly those that do not set TLS 1.2 as the default value. This is relevant for
Windows versions earlier than Windows 8, iOS versions prior to version 8, and Android
earlier than version 5.

Furthermore, the Delta Chat app for Android sets the minimum SDK version to 16,
meaning that the earliest version of Android supported by the app constitutes 4.1. Con-
sequently, when using TLS connections on this particular Android version, the default
version of TLS would be TLS 1.1, which is considered deprecated according to IETF9.

5 https://learn.microsoft.com/en-us/windows-server/security/tls/tls-ssl-schannel-ssp-overview
6 https://developer.apple.com/documentation/security
7 https://www.openssl.org/
8 https://docs.rs/async-native-tls/latest/async_native_tls/struct.TlsConnector.html
9 https://tools.ietf.org/id/draft-moriarty-tls-oldversions-diediedie-00.html

Cure53, Berlin · 02/22/23 13/17

https://cure53.de/
https://tools.ietf.org/id/draft-moriarty-tls-oldversions-diediedie-00.html
https://docs.rs/async-native-tls/latest/async_native_tls/struct.TlsConnector.html#method.min_protocol_version
https://www.openssl.org/
https://developer.apple.com/documentation/security
https://learn.microsoft.com/en-us/windows-server/security/tls/tls-ssl-schannel-ssp-overview
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected file:
https://github.com/deltachat/deltachat-android/blob/master/build.gradle

Affected code:
android {
 flavorDimensions "none"
 compileSdkVersion 32
 useLibrary 'org.apache.http.legacy'

 defaultConfig {
 [...]
 minSdkVersion 16
 targetSdkVersion 32
 }
[...]
}

To mitigate this issue, Cure53 recommends using TlsConnector::min_protocol_version
to set the default TLS protocol version to TLS 1.2, since both TLS 1.0 and TLS 1.1 are
insecure and no longer considered state-of-the-art. Additionally, one can advise setting
the minimum SDK version for the Delta Chat Android app to 22 or higher, which would
ensure that Android 5.0 is the minimum supported version for Delta Chat.

MER-01-007 WP2: Providers incur potentially insecure settings (Info)
Whilst reviewing the deltachat-core-rust library source code, the observation was made
that the library contains a hardcoded email provider database, which includes domains
and related settings such as SMTP/IMAP ports. This database is utilized to recognize
the email servers to which messages are sent.

One can pertinently note that this issue has been discussed with the client during the
course of this security assessment, who confirmed that a developer manually reviews
the database and creates it using the Python script deltachat-core-rust/src/provider/up-
date.py. However, this process could facilitate risk if any email provider entries have
been tampered with and remain unnoticed during this process.

To mitigate this issue, Cure53 advises implementing an automated process for generat-
ing the email provider database. Additionally, the email provider entries should undergo
integrity checks to eliminate any potential for manipulation.

Cure53, Berlin · 02/22/23 14/17

https://github.com/deltachat/deltachat-android/blob/master/build.gradle
https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The impressions gained during this report - which details and extrapolates on all findings
identified during the CW07 testing against the merlinux-curated and mailcow-based mail-
server template for Delta Chat usage, the related setup, and several connected Delta
Chat Rust libraries by the Cure53 team - will now be discussed at length. To summarize,
the confirmation can be made that the components under scrutiny have garnered a posi-
tive impression; sufficient security safeguards have been established for the features in
scope, though numerous opportunities for hardening were observed and documented.

Firstly, Cure53 would like to comment on all WP1-related findings, which pertained to the
merlinux-curated server guide template for Delta Chat, mailcow, and utilized compo-
nents such as Nginx, Dovecot, Postfix, and the mailadm application. The design assur-
ance that the rolled-out setup ensures an adequately TLS-encrypted and secured con-
nection with the Delta Chat application was subjected to due diligence validation by the
testing team. The Postfix and Dovecot configurations also underwent stringent examina-
tion for any incorrect authentication settings that may allow credential leakage in either a
plaintext session or Man-in-the-Middle (MitM) scenario.

Despite the fact that Postfix exposes SMTP plaintext on port 25, authentication is un-
available without the STARTTLS command. Elsewhere, testing confirmed that the stan-
dard TLS/SSL settings were correctly adapted and adhere to typical guidance concern-
ing supplementary hardening procedures, including the exclusion of potentially insecure
ciphers.

Generally speaking, both applications are sufficiently configured and the deployed set-
tings take advantage of the security features offered for TLS/SSL encryption. The afore-
mentioned mailadm application and exposed HTTP endpoint - as well as its interaction
via the Delta Chat bot component - represent another primary focus area for this assess-
ment. Mailadm is written in Python and leverages the Flask framework to expose an
HTTP Post endpoint. The testing team positively noted concise and legible code compo-
sition in this respect.

The externally exposed HTTP endpoint did not incur any security weaknesses since only
one parameter is parsed, which is handled safely internally, including within any data-
base queries. This viewpoint applies to database statements in addition, due to the fact
that parameterized queries are utilized throughout the code. The interaction between
Flask and the Nginx reverse proxy was also reviewed for common HTTP-related threats,
such as HTTP request smuggling. Positively, these efforts confirmed a lack of associ-
ated vulnerabilities.

Cure53, Berlin · 02/22/23 15/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

However, the Delta Chat bot component unveiled some weaknesses concerning valida-
tion of user-controlled parameters. As documented in tickets MER-01-004 and MER-01-
005, a path traversal and an incorrect email validation were detected in the available bot
commands. Notably, this communication channel is only available to administrators and
no subsequent issues were observed in the bot’s logic that would otherwise have al-
lowed non-administrators to execute commands. Lastly, the mailcow GUI setup aspect
was evaluated to determine the presence of any persistent security flaws.

In this respect, testing confirmed a shell injection vulnerability in the application’s Sync
Job feature, as stipulated in ticket MER-01-008. Nevertheless, the necessary permission
must be assigned to an account; subsequently, the attached severity marker was appro-
priately downgraded. Despite the minimal impact, this behavior provides a perfect exam-
ple of the effect any third-party application can incur upon the overall security foundation.
In light of this, Cure53 highly recommends ensuring all deployed software are regularly
updated to the latest available version.

Next, Cure53 would like to offer conclusory commentary on all WP2-related findings per-
taining to the Delta Chat core library and other libraries utilized in this context. The
deltachat-core library was developed using the Rust programming language with a code
base that was easy to comprehend and understand. Generally, the code reviewed favor-
ably during this pentest, though one must underline that some potential security risks
were identified despite its evident quality. Delta Chat leverages third-party libraries for
specific operations, and as such remains entirely dependent on the security resilience of
said libraries. In this respect, Cure53 recommends enforcing a strict update regiment for
all dependencies to negate any security issues persisted in a timely fashion.

As part of this review, a thorough scan of dependencies was performed, revealing that
two crate dependencies are both outdated and susceptible to vulnerabilities, as outlined
in ticket MER-01-002. The library's code has been fortified by applying
forbid(unsafe_code), which helps to prevent usage of any potentially insecure code seg-
ments. This practice facilitates a solid codebase resistant to a host of common attack
vectors. Furthermore, the developers have implemented clippy for static code analysis,
enabling the detection and prevention of commonly-found coding errors. SQLite consti-
tutes the chosen database for the core library. A scan for potential SQL injection vulner-
abilities was performed here, for which the testing team confirmed sufficient protection
via prepared statements. The SQLite database was deemed unencrypted for the desk-
top app, storing all passwords in plain (see MER-01-003).

This absence of password protection and SQLite database encryption can expose all
data contained to various security risks, including unauthorized access to sensitive infor-
mation, such as passwords.

Cure53, Berlin · 02/22/23 16/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

A primary focus was placed on async-native-tls, a Rust crate used for establishing TLS
connections, with the following observations garnered for this feature: async-native-tls
uses SChannel internally for Windows, Security.framework for iOS, and OpenSSL for all
other platforms. Testing confirmed that the core library does not establish a minimum
TLS version, as stipulated in ticket MER-01-006. This may result in compatibility and se-
curity issues with older operating systems, such as those preceding Windows 8, Android
4.1, and iOS 8.

The connection handling itself was audited, though no associated weaknesses were de-
tected in this regard. The SMTP module was also scrutinized for STARTTLS downgrade
attacks and was subsequently deemed error-resistant. The SOCKS5 connection han-
dling was examined, which raised the absence of a socket connection timeout. However,
this behavior was considered unexploitable and does not induce susceptibility to risk,
thus no noteworthy findings were reported. In addition, the email provider handling was
subjected to rigorous analysis, which resulted in the detection of an insecure workflow
regarding email provider database creation (see MER-01-007). Finally, the HTTP and
NET modules that establish HTTP clients and TCP streams were thoroughly audited,
though this area yielded a lack of results.

In conclusion, the in-scope components garnered a positive impression following the
completion of this review, particularly relating to strong SSL/TLS encryption, the mail
server, and client library, which have all made excellent progress toward offering a first-
rate framework from a security perspective. However, the mailcow backend was deemed
suboptimal, for which the discovered issue should be addressed by the developer team
at the earliest possible convenience. Moving forward, Cure53 recommends conducting
another comprehensive security assessment against the mailcow code, which will en-
sure that existing vulnerabilities and miscellaneous issues are sufficiently addressed,
that newly-introduced functionalities cannot incur fresh vulnerabilities and attack vectors,
and that any emerging issues can be proactively negated as early as possible in the
software development process.

Cure53 would like to thank Holger Krekel, Björn Petersen, Nami, and all other participa-
tory personnel from the merlinux GmbH and maintainer teams for their excellent project
coordination, support, and assistance, both before and during this assignment.

Cure53, Berlin · 02/22/23 17/17

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Delta Chat Mail-Server Template & Libraries 02.2023
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	MER-01-003 WP2: Unencrypted SQLite database storage (Low)
	MER-01-004 WP1: Domain validation and creation mismatch (Medium)
	MER-01-005 WP1: Path traversal in mailcow API request (Low)
	MER-01-008 WP1: Shell command injection in mailcow Sync Job feature (High)

	Miscellaneous Issues
	MER-01-001 WP1: Path traversal in QR code generation via token name (Low)
	MER-01-002 WP2: Outdated and vulnerable dependencies (Info)
	MER-01-006 WP2: Lack of TLS minimum version set (Low)
	MER-01-007 WP2: Providers incur potentially insecure settings (Info)

	Conclusions

